数据分析必须具备的进阶思维:因果关系三层级

如果你能力变强10倍,或者突然聪明很多,人生会怎样?你有想过这个问题吗?

数据分析必须具备的进阶思维:因果关系三层级

查理想过。他是一个智商不足 70 的低智儿。一直以来,他想变聪明,因为那样似乎更被人喜欢。

尽管他有很多朋友,他们开他玩笑,这令他们高兴,他也觉得高兴。

他是小说《献给阿尔吉侬的花束》里的主人公。

他和我们不一样的是,经过一场手术,他真的成了智商 180 的天才。

而我们只能想象未发生的事情,这在因果推断这门学科里,是一个重要的概念,叫“反事实”。

正确判断因果关系非常难,无论在工作还是日常生活中。

01、日常决策的因果关系

在《从历史现象中去简单找原因是危险的 | BetterRead》这篇文章中,作者假设了这么一个场景:

假设我昨天没有睡好,天又下雨,结果我开车出去撞了护栏。

同时他又假设以下陈述均为事实:

  • 1) 我昨晚没睡好。
  • 2) 天下雨。
  • 3) 我在国内第一次开车。
  • 4) 北京交通标识不清楚。
  • 5) 当时正好一个人奔跑过来,让我惊恐。
  • 6) 我开车前喝了一杯酒。
  • 7) 我酒量不高。

那么这个事故的原因是什么?都挺像的。

作者分析,为什么你会觉得“下雨”是一个原因:

如果当天是天晴,那么天晴能不能成为事故的一个原因呢?大部分人可能会认为天晴作为事故的一个原因比较奇怪。

这可能是因为我们有个潜在假设,就是天晴是常态的,而下雨不是常态。但如果一个地方一天 24 小时,一年 365 天都在下雨,那么天晴就成了一个不正常的状态。在这种情况下,天晴反而让我不习惯,最后让我撞到护栏上去了。

所以我们在说“下雨”是一个原因时,背后其实已经在潜在假设正常状态是指天晴了。

由此他提出一个观点:我们在分析原因时,潜在假设了一个正常的参考系。

就像划火柴着火,如果你问原因是什么,人们会说是划火柴,而不会说是存在氧气。

认知科学家、心理学家 Steven Pinker (史蒂芬·平克) 在《思想本质》里解释说,我们通常把易于识别的那个因素当作原因:

人们莫名其妙地将其中一个必要条件识别出来,以此作为一个事件的原因,同时却将其他条件作为该事件发生的动因和辅助因素,即使这些条件与那个被识别出的原因是一样不可或缺的。这些必要条件间的区别并不在于物理事件间的连接或它们所遵循的规律,而在于与某些其他事态的隐性对比。

...由于氧气几乎总是存在于我们的周围,因此我们往往不会将它的存在看成是导致火柴燃烧的一个原因。但相比于不划火柴,人们划火柴的机会少得多。...所以我们将火柴燃烧的原因归功给了划火柴这个行为。

日常生活中的因果判断,和我们的认知,即大脑对于因果的理解有关系。

02、认知理解的因果关系

我们来考虑这么一个问题:

一辆有轨电车马上要撞向 5 个毫不知情的铁路工人。假设此时你正站在交换机旁边,你可以将电车扳到另一条轨道上,但那样会撞上另一个毫不知情的铁路工人。

你会扳动开关吗?

然后想象另一个场景:你站在一座大桥上俯瞰,你可以扔下重物让电车停止,以避免撞向 5 个工人。而唯一的重物是你旁边的胖子。

你会把他扔下去吗?

大多数人在第一种情况中选择会,而第二种情况选择不会。同样是牺牲1人救5人,为什么会有这样的差异呢?

平克通过人类语言中动词的研究,解释说,人类的因果关系识别基于一个“力动态”的心智模型。

在一个因果场景中,一个参与者被称为“主动力”:一个被设想为具有运动或静止内在倾向的实体。另一个参与者被叫做“拮动力”:一个在主动力上施加外力的实体,这个外力通常是对主动力内在倾向的反作用力。

如果拮动力的力量大于主动力的内在倾向性,那么主动力从运动状态变为静止,或反之。如果拮动力的力量小于主动力的内在倾向性,那么主动力则保持原始状态。

简单说就是,关于有因果相互作用的两个物体,我们会假设一个是有内在运动或静止倾向的实体,而另一个是加之在它身上的力量(因)。最后这个实体是否运动(果),与它内在倾向性和外在力量大小的差异决定。

就像下图,方块和椭圆分别代表有内在静止和运动倾向的主动力,箭头代表拮动力(注意有大小之分)。红色代表主动力最终运动,蓝色代表静止,那么有 4 种状态:

数据分析必须具备的进阶思维:因果关系三层级

在第一个场景中,那 5 个毫不知情的铁路工人是主动力。拮动力,也就是致死原因,是那辆列车。而“我”做的,是作用于拮动力,企图改变它。

在第二个场景中,胖子是主动力。拮动力是“我”,“我”,成了导致胖子死亡的直接原因。

同样结果的事件,心智会有不同的解释。而这种理解又和科研、工作中的因果关系是有差别的。

03、研究中的因果关系

因果关系三层级

开篇我们提到了“反事实”,这是《为什么:关于因果关系的新科学》中的概念。这本书的作者 Judea Pearl (朱迪亚·珀尔)是图灵奖得主,计算机科学家和哲学家。

他指出,因果关系有 3 个层级。看下面这张图应该可以大概明白:

数据分析必须具备的进阶思维:因果关系三层级

现在的机器学习、深度学习还处在第一层。

第二层是干预,例如头疼,服用阿司匹林。是在干预一个变量(人体内阿司匹林的量),以影响另一个变量(头疼的状态)。

最高层“反事实”,假如吃完阿司匹林,头不疼了。那是因为吃药引起的吗?还是因为我听到了某个好消息?还是因为我当时吃的食物?我们需要能乘坐时光机回到过去,改变历史:假如我当时没有吃阿司匹林,会发生什么?

引用书里的一张图,美国诗人 Robert Frost (罗伯特·弗罗斯特)的作品《未选择的路》体现了反事实的概念:

数据分析必须具备的进阶思维:因果关系三层级

(可惜我不能同时去涉足,我在那路口久久伫立...)

相关不是因果

统计学里有个段子:一个国家的人均巧克力消费量和诺贝尔奖得主的人数之间存在正相关。

那我们是不是要多吃巧克力呢?

事实可能是,在富裕的西方国家,吃巧克力的人更多,在教育和科研上投入更多,因而产生更多诺奖得主。这个“富裕”,同时导致了更多的巧克力消费和更多的诺奖得主,是一个“混杂”因子。

混杂是一个一直以来困扰统计学家问题。朱迪亚·珀尔指出,统计学家总是高估或者低估混杂的影响。例如,在有些研究中,能看到一长串被控制的变量:收入、年龄、种族、宗教、身高、头发颜色、性取向、健身频率等等。而有的时候,又不愿意去控制一些变量。

混杂之所以在统计学中如此难解决,根据作者的观点,是因为它不是一个统计学概念,而是一个因果概念,属于因果关系之梯第二层。

具体怎么处理呢?可以通过因果关系图。这就不具体展开了(因为没看懂)。

但是在平常的工作中,还是有一些方法可以让我们更好地区分相关与因果。在《原因与结果的经济学》里,作者提出,判断因果还是相关,可以先问 3 个问题:

  • 是否“纯属巧合”?
  • 是否存在第三变量?
  • 是否存在逆向因果关系?

是否纯属巧合?例如尼古拉斯·凯奇一年演出的电影数与泳池溺亡人数正相关。

是否存在第三变量?也就是上文说的混杂。

是否存在逆向因果关系?

假如某个地区警察多,犯罪案件数量也多,有人说由于警察多导致犯罪多。这值得存疑,大部分的情况可能是犯罪多导致警察多。

正确理解因果关系,是思维升级的利器。

查理动了手术,智商飙升。

他的记忆也开始复苏,他发现曾经傻傻跟着别人笑的“玩笑”是取笑。

他周围的人智商跟不上,好像感到了一种背叛。

他反而没了朋友。

同时走在两条花园小径的查理,理解了那些因果的变量。

不知道他是否更愿意,做回那个只是走在一侧道路的人。

参考资料:

  • 《思想本质》
  • 《为什么:关于因果关系的新科学》
  • 《原因与结果的经济学》
  • 《献给阿尔吉侬的花束》

Taraaa,微信公众号:(ID:Tarasayhi),产品经理,分享产品方法论、学习思维技巧。

本文由 新媒体运营 作者:Dalson 发表,其版权均为原作者所有,文章内容系作者个人观点,不代表 新媒体运营 对观点赞同或支持,未经许可,禁止转载,题图来自Unsplash,基于CC0协议。
1

发表评论